Count and format stages transitions.
transitions(
hypnogram,
stages = c("AWA", "REM", "N1", "N2", "N3", "NREM"),
format = "vector"
)A hypnogram dataframe. Dataframe must contain begin (POSIXt), end (POSIXt) and event (character) columns.
Stages to include in transitions Defaults to c("N1", "N2", "N3", "N4", "REM").
Set the return format. 'vector', 'dataframe' or 'heatmap'.
Count of stages transitions in selected format.
Swihart BJ, Punjabi NM, Crainiceanu CM. Modeling sleep fragmentation in sleep hypnograms: An instance of fast, scalable discrete-state, discrete-time analyses. Comput Stat Data Anal. 2015 Sep;89:1-11. doi: 10.1016/j.csda.2015.03.001. PMID: 27182097; PMCID: PMC4865264.
tryCatch({
download.file("https://rsleep.org/data/hypnodensity.csv", "hypnodensity.csv")
hypnodensity <- read.csv2("hypnodensity.csv")
unlink("hypnodensity.csv")
events <- hypnogram(hypnodensity)
transitions(events)
transitions(events, format = "dataframe")
transitions(events, format = "heatmap")
# 3 Dimensions sleep transitions
levels(events$event)[levels(events$event)=="N1"] <- "NREM"
levels(events$event)[levels(events$event)=="N2"] <- "NREM"
levels(events$event)[levels(events$event)=="N3"] <- "NREM"
round(
transitions(
events,
format = "dataframe")/(
sum(transitions(events)))*100,2)
}, error = function(e) {
print("Error executing this example, check your internet connection.")
})
#> AWA REM NREM
#> AWA 8.16 0.61 3.06
#> REM 1.77 18.29 5.91
#> NREM 1.84 7.07 53.30